# 6. There are 1000 students in a high school. Among the 1000 students, 800 students have a laptop

6. There are 1000 students in a high school. Among the 1000 students, 800 students have a laptop, and 300 students have a tablet. 250 students have both devices. Let L be the event that a randomly selected student has a laptop, and T be the event that a randomly selected student has a tablet. Show all work. Just the answer, without supporting work, will receive no credit. (a) Provide a written description of the event L OR T. (b) What is the probability of event L OR T? 7. Consider rolling two fair dice. Let A be the event that the two dice land on different numbers, and B be the event that the first one lands on 6. (a) What is the probability that the first one lands on 6 given that the two dice land on different numbers? Show all work. Just the answer, without supporting work, will receive no credit. (b) Are event A and event B independent? Explain. STAT 200: Introduction to Statistics Final Examination, Spring 2016 OL1/US1 Page 4 of 7 8. There are 8 books in the “Statistics is Fun” series. (Show all work. Just the answer, without supporting work, will receive no credit). (a) How many different ways can Mimi arrange the 8 books in her book shelf? (b) Mimi plans on bringing two of the eight books with her in a road trip. How many different ways can the two books be selected? 9. Assume random variable x follows a probability distribution shown in the table below. Determine the mean and standard deviation of x. Show all work. Just the answer, without supporting work, will receive no credit. x -2 0 1 3 5 P(x) 0.1 0.2 0.3 0.1 0.3 10. Mimi just started her tennis class three weeks ago. On average, she is able to return 20% of her opponent’s serves. Assume her opponent serves 10 times. (a) Let X be the number of returns that Mimi gets. As we know, the distribution of X is a binomial probability distribution. What is the number of trials (n), probability of successes (p) and probability of failures (q), respectively? (b) Find the probability that that she returns at least 1 of the 10 serves from her opponent. Show all work. Just the answer, without supporting work, will receive no credit. 1 1. Assume the weights of men are normally distributed with a mean of 172 lb and a standard deviation of 30 lb. Show all work. Just the answer, without supporting work, will receive no credit. (a) Find the 80th percentile for the distribution of men’s weights. (b) What is the probability that a randomly selected man is greater than 185 lb? 1 2. Assume the IQ scores of adults are normally distributed with a mean of 100 and a standard deviation of 15. Show all work. Just the answer, without supporting work, will receive no credit. (a) If a random sample of 25 adults is selected, what is the standard deviation of the sample mean? (b) What is the probability that 25 randomly selected adults will have a mean IQ score that is between 95 and 105? 1 3. A survey showed that 80% of the 1600 adult respondents believe in global warming. Construct a 95% confidence interval estimate of the proportion of adults believing in global warming. Show all work. Just the answer, without supporting work, will receive no credit. STAT 200: Introduction to Statistics Final Examination, Spring 2016 OL1/US1 Page 5 of 7 1 4. In a study designed to test the effectiveness of acupuncture for treating migraine, 100 patients were randomly selected and treated with acupuncture. After one-month treatment, the number of migraine attacks for the group had a mean of 2 and standard deviation of 1.5. Construct a 95% confidence interval estimate of the mean number of migraine attacks for people treated with acupuncture. Show all work. Just the answer, without supporting work, will receive no credit. 15 . Mimi is interested in testing the claim that more than 75% of the adults believe in global warming. She conducted a survey on a random sample of 100 adults. The survey showed that 80 adults in the sample believe in global warming. Assume Mimi wants to use a 0.05 significance level to test the claim. (a) Identify the null hypothesis and the alternative hypothesis. (b) Determine the test statistic. Show all work; writing the correct test statistic, without supporting work, will receive no credit. (c) Determine the P-value for this test. Show all work; writing the correct P-value, without supporting work, will receive no credit. (d) Is there sufficient evidence to support the claim that more than 75% of the adults believe in global warming? Explain. 16 . In a study of memory recall, 5 people were given 10 minutes to memorize a list of 20 words. Each was asked to list as many of the words as he or she could remember both 1 hour and 24 hours later. The result is shown in the following table. Number of Words Recalled Subject 1 hour later 24 hours later 1 14 12 2 18 15 3 11 9 4 13 12 5 12 12 Is there evidence to suggest that the mean number of words recalled after 1 hour exceeds the mean recall after 24 hours? Assume we want to use a 0.10 significance level to test the claim. (a) Identify the null hypothesis and the alternative hypothesis. (b) Determine the test statistic. Show all work; writing the correct test statistic, without supporting work, will receive no credit. (c) Determine the P-value for this test. Show all work; writing the correct P-value, without supporting work, will receive no credit. (d) Is there sufficient evidence to support the claim that the mean number of words recalled after 1 hour exceeds the mean recall after 24 hours? Justify your conclusion.

You'll get 1 file (47.3KB)